Automated Fiber Placement Composites for Improved Structural Efficiency of Aircrafts

Kazem Fayazbakhsh & Damiano Pasini

Pasini Lab

Mechanical Engineering
McGill University

 $May\ 16^{th},\ 2013$ UTIAS National Colloquium on Sustainable Aviation

Outline

- Introduction
 - A sustainable aircraft : Boeing 787
 - Composite design concepts
 - Automated Fiber Placement
- Talk objectives
- Research expertise of the Lab
- Concluding remarks

A sustainable aircraft : Boeing 787

- Fuel use reduced
- Automated manufacturing technologies
- Emissions cut
- Quieter take-offs and landings
- Point-to-point travel enabled
- End-of-life recycling
- A life cycle approach

Boeing 787 (a sustainable aircraft)

- Fuel use reduced
- Automated manufacturing technologies
- Emissions cut
- Quieter take-offs and landings
- Point-to-point travel enabled
- End-of-life recycling
- A life cycle approach

Boeing 787 (a sustainable aircraft)

- Fuel use reduced
 - Increased use of light weight composite materials
 - New engines
 - More-efficient system applications
 - Modern aerodynamics
- Advanced manufacturing technologies
 - Automated Fiber Placement

Boeing 787 (a sustainable aircraft)

- Fuel use reduced
 - Increased use of light weight composite materials
 - New engines
 - More-efficient system applications
 - Modern aerodynamics
- Advanced manufacturing technologies
 - Automated Fiber Placement

Composite design concepts

- Constant stiffness (CS)
 - Traditional composite design
 - Keeping the fiber angle constant within each layer

Constant stiffness

- Variable stiffness (VS)
 - Allowing fibers to follow curvilinear paths
 - More favorable stress distribution

variable stiffness

Automated Fiber Placement machine (AFP)

- Robotic arm which places strips of material side-by-side to create a band
- Lays down bands to create the laminate

Pros:

- High manufacturing flexibility
- Fully automated process
- Speeds up the layup time
- Ideal for large structures

Source: Coriolis website.

- Cons:
 - Defects produced during the manufacturing

Automated Fiber Placement machine (AFP)

- Robotic arm which places strips of material side-by-side to create a band
- Lays down bands to create the laminate

Pros:

- High manufacturing flexibility
- Fully automated process
- Speeds up the layup time
- Ideal for large structures

Source: Coriolis website.

- Cons:
 - Defects produced during the manufacturing

Variable stiffness defects

Defects can be categorized as gaps and overlaps

Gaps

Overlaps

Talk objectives

- Exploiting variable stiffness design to improve mechanical efficiency of lightweight laminate composites
- Development of a simulation toolbox to capture the mechanical impact of AFP defects
- Incorporating the effect of defects in the analysis and optimization of variable stiffness composite laminates

Lab Expertise

Lab Expertise

Lab Expertise

Current Projects

Multiphysics of lattice materials

AFP variable stiffness laminate composites

Ultralightweight lattice panels via additive manufacturing

Cellular hip replacement implants

Lattice stent-like devices

Plant cellular tissue inspired materials

Talk objectives

- Exploiting variable stiffness design to improve mechanical efficiency of lightweight laminate composites
- Development of a simulation toolbox to capture the mechanical impact of AFP defects
- Incorporating the effect of defects in the analysis and optimization of variable stiffness composite laminates

Talk objectives

- Exploiting variable stiffness design to improve mechanical efficiency of lightweight laminate composites
- Development of a simulation toolbox to capture the mechanical impact of AFP defects
- Incorporating the effect of defects in the analysis and optimization of variable stiffness composite laminates

Curvilinear fiber path

 Constant curvature fiber path is used as the reference fiber path*

• The reference fiber path is shifted to manufacture the whole laminate

10 x 16 in plate is considered as a case study

Free

*Blom et al., Journal of Composite Materials (2009).

Multi-objective optimization

- Simultaneously optimization of $[\pm \langle T_1|T_0|T_1\rangle]_{4s}$ for
 - In-plane Stiffness
 - Buckling Load

$$\min_{\mathbf{x}} \left\{ 1 / E_{eq}(\mathbf{x}), 1 / N_{cr}(\mathbf{x}) \right\}; \mathbf{x} = \left(T_0, T_1 \right)^T$$
s.t. $\left\{ T_0, T_1 \in [0^\circ, 90^\circ] \& R \ge 25 in \right\},$

- The effect of defects is ignored.

Performance of VS design without defects

Variable stiffness defects

Defects can be categorized as gaps and overlaps

Gaps

Overlaps

Talk objectives

- Exploiting variable stiffness design to improve mechanical efficiency of lightweight laminate composites
- Development of a simulation toolbox to capture the mechanical impact of AFP defects
- Incorporating the effect of defects in the analysis and optimization of variable stiffness composite laminates

AFP defects analysis toolbox

The effect of defects on VS laminates performance

	Normalized buckling load	Normalized buckling load	Normalized buckling load
Design 2	1.56	1.40	1.88
Design 3	1.33	1.16	1.67

Talk objectives

- Exploiting variable stiffness design to improve mechanical efficiency of lightweight laminate composites
- Development of a simulation toolbox to capture the mechanical impact of AFP defects
- Incorporating the effect of defects in the analysis and optimization of variable stiffness composite laminates

Multi-objective optimization including defects

- Simultaneously maximize objectives of $[\pm <T_1|T_0|T_1>]_{4s}$:
 - In-plane Stiffness.
 - Buckling Load.

$$\min_{\mathbf{x}} \left\{ 1 / E_{eq}(\mathbf{x}), 1 / N_{cr}(\mathbf{x}) \right\}; \mathbf{x} = \left(T_0, T_1 \right)^T$$
s.t. $\left\{ T_0, T_1 \in [0^\circ, 90^\circ] \& R \ge 25 in \right\},$

- The effect of defects is considered during the optimization process.
 - Defect layer method is used.

Impact on the mechanical properties

Impact on the optimum fiber paths

#	Design
1	[±<14 36 14>] _{4s}
2	[±<17 39 17>] _{4s}
3	[±<19 41 19>] _{4s}

Work underway: manufacturing and testing

Work underway: manufacturing and testing

Design 2: highest buckling load compared to the baseline

Concluding remarks

- Exploiting variable stiffness design to improve mechanical efficiency: 56% improvement in buckling load
- Development of a simulation toolbox to capture the mechanical impact of AFP defects:
 - 88% improvement in buckling load for laminates with overlaps
 - 40% improvement in buckling load for laminates with gaps
- Optimization of variable stiffness composite laminates including defects

Concluding remarks

- Exploiting variable stiffness design to improve mechanical efficiency: 56% improvement in buckling load
- Development of a simulation toolbox to capture the mechanical impact of AFP defects:
 - 88% improvement in buckling load for laminates with overlaps
 - 40% improvement in buckling load for laminates with gaps
- Optimization of variable stiffness composite laminates including defects

A lighter structure, more fuel efficient and sustainable

Questions?

Current Projects

Multiphysics of lattice materials

AFP variable stiffness laminate composites

Ultralightweight lattice panels via additive manufacturing

Cellular hip replacement implants

Lattice stent-like devices

Plant cellular tissue inspired materials

Overlap-modified defect element

- A single layer [0]_T laminate.
- An overlap is at the plate center and along fiber direction.
- Material and strength properties are the same as regular composite material.
- The effective element thickness is the average of the thickness in the element.

Superiority of defect element approach

- The element length is half of the tow width.
- The FE model for [+<26|45|26>] layer:

Real gap distribution

Gap distribution in FE model

Existing approach in the literature

Defect element approach

FE model for capturing defects (module 3)

- A novel approach, defect layer, is proposed to capture defects precisely.
 - Gap-modified defect layer.
 - Overlap-modified defect layer.
- Each element may contain any defect area percentage.
- Fiber orientation at the element midpoint is calculated and used as the element fiber orientation.

Gap-modified defect element

- A single layer $[0]_T$ laminate is considered.
- Gap is at the plate center and along the fiber direction.

 Test simulations are used to find material and strength properties.

Modified material and strength properties

- Gap area percentage is varied with the gap width.
- The graphs are used in APDL codes to calculate properties of a defect element with any defect area percentage.

Stress distribution

• The stress in y-direction for [+<26|45|26>] layer in Design (A) with gaps

