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A sustainable aircraft : Boeing 787

e Fuel use reduced

e Automated manufacturing technologies
e Emissions cut

e Quieter take-offs and landings

e Point-to-point travel enabled

e End-of-life recycling

e A life cycle approach
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Boeing 787 (a sustainable aircraft)

e Fuel use reduced
e Automated manufacturing technologies
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Boeing 787 (a sustainable aircraft)

e Fuel use reduced
* Increased use of light weight composite materials
* New engines
* More-efficient system applications
* Modern aerodynamics

e Advanced manufacturing technologies

 Automated Fiber Placement
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Boeing 787 (a sustainable aircraft)

* Increased use of light weight composite materials

 Automated Fiber Placement
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Composite design concepts

e Constant stiffness (CS) e Variable stiffness (VS)
* Traditional composite e Allowing fibers to
design follow curvilinear paths
* Keeping the fiber angle e More favorable stress
constant within each distribution
layer
Constant stiffness

variable stiffness
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Automated Fiber Placement machine (AFP)

e Robotic arm which places strips of material side-by-side to create a band

e Lays down bands to create the laminate

e Pros:

* High manufacturing flexibility
* Fully automated process
* Speeds up the layup time

* Ideal for large structures

Source: Coriolis website.
e (Cons:

* Defects produced during the manufacturing
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Variable stiffness defects

Defects can be categorized as gaps and overlaps

Overlaps
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Talk objectives

e Exploiting variable stiffness design to improve
mechanical efficiency of lightweight laminate
composites

e Development of a simulation toolbox to capture the
mechanical impact of AFP defects

e Incorporating the effect of defects in the analysis and
optimization of variable stiffness composite laminates
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Lab Expertise

Microarchitectured ©

Materials /

\Y (€11 PASINI LAB



14

Lab Expertise
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Current Projects

Multiphysics of AFP variable stiffness UltralightV\./eight.le.lttice
lattice materials laminate composites panels via additive
manufacturing

Cellular .hip Lattice stent-like Plant cellular tissue
replacement implants devices inspired materials
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Talk objectives

e Exploiting variable stiffness design to improve
mechanical efficiency of lightweight laminate
composites
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Curvilinear fiber path

e Constant curvature fiber path is used as the
reference fiber path*

e The reference fiber path is shifted to

manufacture the whole laminate f

[+ <T | TolT,>]

e 10 x 16 in plate is considered as a case study 38 3

Free Free

*Blom et al., Journal of Composite Materials (2009).
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Multi-objective optimization

e Simultaneously optimization of [+<T,|T,|T;>],,for
— In-plane Stiffness
— Buckling Load

1.8

I

[

1.6 y
e !

[

min {I/E,, (x), 1/ Ne, ()} =(T,,T,)'
st. {T,,T,€[0",90°']&R > 25in |,

— The effect of defects is ignored.
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Performance of VS design without defects
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Variable stiffness defects

Defects can be categorized as gaps and overlaps

Overlaps
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Talk objectives

e Development of a simulation toolbox to capture the
mechanical impact of AFP defects
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AFP defects analysis toolbox

Module 1 Module 2 Module 3

Interface between
MATLAB and FEA
(Image processing)

Defect layer method
(Building FE model)

Locating defects
(Defect image creation)

Y

///

7

Alamina with gaps Mesh generation Stress in y-direction
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The effect of defects on VS laminates performance
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Talk objectives

e Incorporating the effect of defects in the analysis and
optimization of variable stiffness composite laminates

McGill PASINI LAB



27

Multi-objective optimization including defects

e Simultaneously maximize objectives of [£<T,|T,|T;>],.:
* In-plane Stiffness.

* Buckling Load.

min {I/E,, (x), 1/ Ne, ()} =(T,,T,)'
st. {T,,T,€[0",90°']&R > 25in |,

* The effect of defects is considered during the optimization process.

* Defect layer method is used.

PASINI LAB




28

Impact on the mechanical properties
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Impact on the optimum fiber paths
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Work underway: manufacturing and testing
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Work underway: manufacturing and testing

Design 2: highest buckling load
compared to the baseline
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Concluding remarks

e Exploiting variable stiffness design to improve mechanical
efficiency : 56% improvement in buckling load

e Development of a simulation toolbox to capture the
mechanical impact of AFP defects:
* 88% improvement in buckling load for laminates with overlaps
* 40% improvement in buckling load for laminates with gaps

e Optimization of variable stiffness composite laminates
including defects
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Concluding remarks

e Exploiting variable stiffness design to improve mechanical
efficiency : 56% improvement in buckling load

e Development of a simulation toolbox to capture the
mechanical impact of AFP defects:
* 88% improvement in buckling load for laminates with overlaps
* 40% improvement in buckling load for laminates with gaps

e Optimization of variable stiffness composite laminates
including defects

A lighter structure, more fuel efficient and sustainable
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Current Projects

Multiphysics of AFP variable stiffness UltralightV\./eight.le.lttice
lattice materials laminate composites panels via additive
manufacturing

Cellular .hip Lattice stent-like Plant cellular tissue
replacement implants devices inspired materials
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Overlap-modified defect element

e Asingle layer [0]; laminate.

e Anoverlap is at the plate center and along fiber direction.

e Material and strength properties are the same as regular composite
material.

e The effective element thickness is the average of the thickness in the
element.

Y

=

PASINI LAB



37

Superiority of defect element approach

o The element length is half of the tow width.

e The FE model for [+<26(|45|26>] layer:
Real gap distribution Gap distribution in FE model
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FE model for capturing defects (module 3)

 Anovel approach, defect layer, is proposed to capture defects precisely.
- Gap-modified defect layer.

- Overlap-modified defect layer.
e Each element may contain any defect area percentage.

e Fiber orientation at the element midpoint is calculated and used as the element
fiber orientation.
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Gap-modified defect element

o Asingle layer [0]; laminate is considered.

e Gap is at the plate center and along the fiber

direction.

* Test simulations are used to find material and strength
properties.
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Modified material and strength properties

e (Gap area percentage is varied with the gap width.

e
. -+
e The graphs are used in APDL codes to calculate | T 2
properties of a defect element with any defect area -
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Stress distribution

e The stress in y-direction for [+<26|45|26>] layer in Design (A)
with gaps
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